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Abstract

x

We investigate constrained supinf problems for functions of two variables. Conditions are given
which assure that the objective function can be perturbed by continuous functions with arbitrary
small norms in such a way that the supinf problem for the perturbed function has a solution.
We also give a characterization of the notion of well-posedness for such problems.
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1 Introduction

In this article we consider the following supinf problem with constraints:

(P ) sup
x∈X

inf
y∈Kx

f(x, y),

where X and Y are (everywhere in this article) completely regular topological
spaces, f : X×Y → [−∞,+∞] is an extended real-valued function and K : X ⇒ Y
is a set-valued mapping with nonempty images. A solution to the problem (P) is
every couple (x0, y0) ∈ X × Y such that y0 ∈ Kx0 and

f(x0, y0) = inf
y∈Kx0

f(x0, y) = sup
x∈X

inf
y∈Kx

f(x, y).

The setting of this problem includes, for example, ”leader-follower” games. In
such a game the first player (who is considered as a leader) makes its choice first
with the aim to maximize her/his profit which is given by the function f . After
choosing x ∈ X, the second player makes her/his choice in the set of feasible
choices Kx. The gain for the first player is f(x, y), which depends on the choice
of the second player, and the value of the problem

vf := sup
x∈X

inf
y∈Kx

f(x, y)

expresses the guaranteed utility which the first player can assure even with the
worst behaviour of the second one. In the particular case when the set-valued
mapping K is given as the set of solutions to some optimization problem, i.e. for
any x ∈ X we have

Kx := {y′ : g(x, y′) = inf
y∈Y

g(x, y)},

where g : X × Y → R is a given function, this game is known as a Stackelberg
problem (sometimes the latter problem is also called ”two level optimization prob-
lem”). For more information about the Stackelberg problem see, e.g., [9], [6], [7].

When we have Kx = Y for any x ∈ X, the problem (P) gives, for example,
the guaranteed gain for some of the two players in noncooperative games, or can
be considered also from the point of view of the study of the existence of saddle
points for the function f .

Let us come back to the general problem (P ) with constraints. Evidently, with-
out additional assumptions on the function f , on the spaces X and Y and on the
set-valued mapping K, the problem (P ) may not have a solution. The principal
aim of the paper is to find conditions which allow perturbations of the original
function f by suitable continuous functions in such a way that the perturbed func-
tion has a solution for the problem (P). The validity of such kind of result is usually
known in optimization as variational principle for the corresponding class of prob-
lems. Such results for functions of two variables have been obtained by McLinden
in [8] (using Ekeland variational principle [1]) and for the case of unconstrained
supinf problems (i.e. in which Kx = Y for each x ∈ X) by Kenderov et al. in
[5]. A variational principle for several classes of usual optimization problems with
constraints was obtained by Ioffe et al. in [2].
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We will also be interested in investigating stronger notions than merely the
existence of solutions to supinf problems. More precisely, we will be interested
in the well-posedness of the corresponding problem. To introduce this notion for
supinf problems, let us first remind that the minimization problem determined by
a given extended real-valued function h : Z → R ∪ {+∞} defined in a topological
space Z is called Tykhonov well-posed if h has a unique minimum point z0 ∈ Z
and, moreover for every minimizing sequence {zn}∞n=1 ⊂ Z for h, i.e. h(zn) →
infZ h, it follows that zn → z0. An equivalent definition of the Tykhonov well-
posedness is: every minimizing sequence for h converges to some minimizer of h.
Analogously, for a given h : Z → R ∪ {−∞} the corresponding maximization
problem is Tykhonov well-posed if there is a unique maximizer of h in Z towards
which converges every maximizing sequence for the function h (equivalently, if the
minimization problem for −h is well-posed in the sense of Tykhonov).

The first notion of well-posedness for the supinf problem (P ) concerns only
the first player. Having in mind the leader-follower game, a solution for the leader
player (called sup-solution) is any point x0 ∈ X such that vf = infy∈Kx0

f(x0, y).
The problem (P ) is called sup-well-posed if the problem to maximize the function
v(·) := infy∈K(·) f(·, y) is well-posed in the sense of Tykhonov. In the latter case,
obviously, there is only one sup-solution.

We will be also interested in a stronger notion of well-posedness for the supinf
problem (P ). Namely, (see e.g. [3]) the problem (P ) is called well-posed if every op-
timizing sequence for the problem (P ) converges to some (in fact, unique) solution
(x0, y0) of (P ) (here, and in the sequel, on X × Y we consider the product topol-
ogy, generated by the topologies of X and Y ). A sequence ((xn, yn))n ⊂ X × Y is
called optimizing for (P ) if:

1. yn ∈ Kxn for every n;
2. v(xn)→ vf = supx∈X infy∈Kx f(x, y);
3. f(xn, yn)→ vf

It is evident that if (P ) is well-posed with unique solution (x0, y0), then the
problem (P ) is sup-well posed with unique sup-solution x0. The converse is not
true, in general. Several (generic) variational principles for the problem (P ), con-
cerning well-posedness were obtained by Kenderov and Lucchetti in [3].

2 Preliminaries

Let Z be a completely regular topological space and h : Z → R ∪ {+∞} be an
extended real-valued function. The set dom (h) = {z ∈ Z : h(z) < +∞} stands as
usual for the domain of h. In the case when h takes values in R ∪ {−∞}, the set
dom (h) again consists of all points in Z at which h is finite. The function h : Z →
R ∪ {+∞} is called proper if its domain is not empty. Denote by C(Z) the space
of all continuous, bounded real-valued functions defined on Z. The space C(Z)
equipped with the norm of uniform convergence ‖g‖Z,∞ := sup{|g(z)| : z ∈ Z},
g ∈ C(Z), is a real Banach space. Let us first formulate the following result from
[4] (see also Remark 2.2 from [5]) which will be used in the sequel (R+ meaning
the set of non-negative reals):
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Lemma 1 ([4][Lemma 2.1]) Let h : Z → R∪{+∞} be a proper lower semicontinu-
ous function which is bounded from below. Let z0 ∈ dom (h) and ε > 0 be such that
h(z0) < infZ h+ ε. Then, there exists a continuous bounded function g : Z → R+

such that g(z0) = 0, ‖g‖Z,∞ ≤ ε and the function h+ g attains its minimum in Z
at z0. Moreover, g can be chosen such that ‖g‖Z,∞ = h(z0)− infZ h.

The above lemma concerns unconstrained optimization, i.e. when we search
for the minimum of h on the whole space X. But in special cases it can be also
modified to have perturbations for constrained optimization problems. Namely,
the following result is true:

Lemma 2 Let h : Z → R ∪ {+∞} be a proper lower semicontinuous function
which is bounded from below. Let A be a closed subset of Z such that A∩dom (h) 6=
∅. Let z0 ∈ A ∩ dom (h) and ε > 0 be such that h(z0) < infA h + ε. Then, there
exists a continuous bounded function g : Z → R+ such that g(z0) = 0, ‖g‖Z,∞ ≤ ε
and the function h+ g attains its minimum in A at z0. Moreover, g can be chosen
such that ‖g‖Z,∞ = h(z0)− infA h.

Proof Define h′ : Z → R ∪ {+∞} by h′(z) := h(z) if z ∈ A and h′(z) = +∞
otherwise. It is not difficult to see that h′ is a proper bounded from below lower
semicontinuous function (which coincides with h on A) and infZ h

′ = infA h
′ =

infA h. Apply Lemma 1 for the function h′. It is easily seen that the obtained
function g ∈ C(Z), after applying Lemma 1 for the function h′, satisfies the
conclusions of Lemma 2.

Recall that a (nonempty valued) set-valued mapping K : X ⇒ Y is called lower
semicontinuous (lsc) at x ∈ X if, for every open set V ⊂ Y such that Kx∩V 6= ∅,
there is an open neighbourhood U of x such that Kx′ ∩ V 6= ∅ for all x′ ∈ U .
The mapping K is called lower semicontinuous in X if it is lower semicontinuous
at each point of X. The mapping K : X ⇒ Y is called upper semicontinuous
(usc) at x ∈ X if, for every open V ⊂ Y such that Kx ⊂ V , there is an open
neighbourhood U of x such that Kx′ ⊂ V for all x′ ∈ U . The mapping K is called
upper semicontinuous in X if it is upper semicontinuous at each point of X.

The following result is well-known. A sketch of the proof is given for the sake
of completeness:

Lemma 3 Let f : X × Y → [−∞,+∞] be an extended real-valued function such
that f is upper semicontinuous in X × Y . Let K : X ⇒ Y be a lsc set-valued
mapping with nonempty images. Then the function v(·) = infy∈K(·) f(·, y) is upper
semicontinuous in X.

Proof Let x0 ∈ X and suppose that v(x0) = infy∈Kx0
f(x0, y) <∞ (otherwise we

are done). Take any t ∈ R with v(x0) < t. Then, for some y0 ∈ Kx0 we will have
f(x0, y0) < t. Since f is upper semicontinuous at (x0, y0) there are nonempty open
neighborhoods U of x0 and V of y0 such that f(x, y) < t for each (x, y) ∈ U × V .
Since y0 ∈ Kx0 ∩ V and K is lower semicontinuous at x0, we may think that U
is chosen in such a way that Kx ∩ V 6= ∅ for every x ∈ U . Now, if x ∈ U , let
yx ∈ Kx ∩ V . Then, we have,

v(x) = inf
y∈Kx

f(x, y) ≤ f(x, yx) < t,

which shows that v(·) is upper semicontinuous in X.
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3 Perturbations of supinf problems

In this section we turn back to our general question to find conditions under which
we can perturb a given function of two variables by continuous functions in such
a way that the perturbed function has a solution for the supinf problem (P). We
will suppose the following assumptions for the objective function f : X × Y →
[−∞,+∞] and for the set-valued mapping K : X ⇒ Y , the last two of which, in
the case when Kx = Y for every x ∈ X, have been already considered in [5]:

(A1) the function f : X × Y → [−∞,+∞] is upper semicontinuous in X × Y ;
(A2) the mapping K : X ⇒ Y is with nonempty closed images and is lsc in X;
(A3) the function v(·) = infy∈K(·) f(·, y) is bounded above in X and proper as a

function with values in R ∪ {−∞};
(A4) for every x ∈ X the function f(x, ·) is lower semicontinuous in Y .

First, we will prove the following basic perturbation result, which is a varia-
tional principle for supinf problems with constraints, and which shows that we can
make as small as we wish perturbations of a function of two variables satisfying the
conditions (A1)-(A4) (together with the constrained mapping K), by a difference
of individually continuous functions defined in Y and X respectively, such that
the perturbed function has a solution for the supinf problem. Its proof uses the
idea of the proof of Proposition 2.6 from [5], where the case without constraints
was considered.

Theorem 1 Let f : X × Y → [−∞,+∞] be an extended real-valued function and
K : X ⇒ Y be a set-valued mapping which satisfy (A1)-(A4). Let ε > 0 and
x0 ∈ X be such that v(x0) > supx∈Xv(x) − ε and let δ > 0 and y0 ∈ Kx0 be
such that f(x0, y0) < infy∈Kx0

f(x0, y) + δ. Then, there exist continuous bounded
functions q : X → R+ and p : Y → R+, such that q(x0) = p(y0) = 0, ‖q‖X,∞ ≤ ε,
‖p‖Y,∞ ≤ δ and the supinf problem supx∈X infy∈Kx{f(x, y) − q(x) + p(y)} has a
solution at (x0, y0).

If the function f and the set-valued mapping K satisfy the assumptions (A1)–
(A4), and ε > 0 and δ > 0 are arbitrary, then points x0 and y0 as in the statement
above always exist.

Proof Consider the function v(x) = infy∈Kx f(x, y), x ∈ X. Since, under the
assumptions of the theorem it is proper and bounded from above (assumption
(A3)) and also upper semicontinuous (Lemma 3), then by Lemma 1, applied to
the function −v(·), there is a continuous bounded function q : X → R+, such
that q(x0) = 0, ‖q‖X,∞ ≤ ε and the function infy∈K(·) f(·, y) − q(·) attains its
maximum in X at x0.

From assumption (A3) (the fact that v is proper and bounded above) it fol-
lows that v(x0) = infy∈Kx0

f(x0, y) is a finite number. Consequently, f(x0, ·) is a
bounded below proper (and by (A4), also lower semicontinous) function with values
in R∪{+∞}, such that Kx0∩dom (f(x0, ·)) 6= ∅. Then, since Kx0 is also a closed
set in Y , by Lemma 2 there exists a continuous bounded function p : Y → R+, such
that p(y0) = 0, ‖p‖Y,∞ ≤ δ and the function f(x0, ·) + p(·) attains its minimum
in Kx0 at y0. Moreover, ‖p‖Y,∞ = f(x0, y0)− infy∈Kx0

f(x0, y) =: c ≥ 0.
With the so obtained functions q and p, take now some arbitrary x ∈ X and

fix it. Using the properties above we have:
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infy∈Kx{f(x, y)− q(x) + p(y)} − c = infy∈Kx{f(x, y) + p(y)− c} − q(x)
≤ infy∈Kx f(x, y)− q(x) = v(x)− q(x)
≤ v(x0)− q(x0) = v(x0),

the last inequality being true because v(·)− q(·) attains its maximum in X at x0
and taking into account that q(x0) = 0.

Therefore, having in mind the above chain of inequalities and the definition of
c, we obtain

infy∈Kx{f(x, y)− q(x) + p(y)} ≤ v(x0) + c = infy∈Kx0
f(x0, y) + c = f(x0, y0)

= f(x0, y0) + p(y0) = infy∈Kx0
{f(x0, y) + p(y)}

= infy∈Kx0
{f(x0, y)− q(x0) + p(y)}.

In the above we used the fact that the function f(x0, ·) + p(·) attains its mini-
mum on Kx0 at y0.

Combining the above chain of inequalities we conclude that (x0, y0) is a solution
to the supinf problem generated by the function f(x, y)−q(x)+p(y), (x, y) ∈ X×Y .

In the following theorem (and in the sequel) on C(X)×C(Y ) we consider the
usual product topology, generated by the norms in C(X) and C(Y ) respectively. It
is easily seen that if a function f : X × Y → [−∞,+∞] and a set-valued mapping
K : X ⇒ Y satisfy the assumptions (A1)–(A4) and g is a continuous bounded
function on X ×Y , then the function f + g and the mapping K also satisfy (A1)–
(A4). Therefore, the next theorem is an easy consequence of Theorem 1, having
in mind the latter remark and the properties of the sup-norms.

Theorem 2 Let f : X×Y → [−∞,+∞] and K : X ⇒ Y satisfy the assumptions
(A1)–(A4). Then, we have the following:

(a) The set {(q, p) ∈ C(X)×C(Y ) : the function f(x, y)+q(x)+p(y), (x, y) ∈ X×
Y , has a solution for the supinf problem (P)} is a dense subset of C(X)×C(Y );

(b) The set {u ∈ C(X × Y ) : the function f(x, y) + u(x, y), (x, y) ∈ X × Y , has a
solution for the supinf problem (P) } is a dense subset of (C(X×Y ), ‖·‖X×Y,∞).

The assertions from (a) and (b) above constitute ”dense” variational principles
for supinf problems with constraints.

4 Well-posedness of supinf problems

In this section we will give a characterization of the well-posedness of supinf prob-
lems with constraints. But before that, we give a result concerning the sup-well-
posedness, defined in the Introduction. Recall that, given the objective function
f : X × Y → [−∞,+∞] and the constraint mapping K : X ⇒ Y , the sup-well
posedness of the corresponding supinf problem (P) is simply the well-posedness of
maximization problem determined by the function v(x) = infy∈Kx f(x, y), x ∈ X.
The following proposition is proved as Proposition 2.10 from [5], using Theorem 1,
and this is why the proof is omitted. It shows that in some cases (for example, in
metric spaces) we can obtain perturbations such that the corresponding perturbed
supinf problem not only has a solution but it is also sup-well-posed.
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Proposition 1 Let f : X × Y → [−∞,+∞] and K : X ⇒ Y satisfy the assump-
tions (A1)–(A4). Let ε > 0 and x0 ∈ X be such that v(x0) > supx∈Xv(x) − ε
and let δ > 0 and y0 ∈ Kx0 be such that f(x0, y0) < infy∈Kx0

f(x0, y) + δ. Sup-
pose that x0 has a countable local base in X. Then, there exist continuous bounded
functions q : X → R+ and p : Y → R+, such that q(x0) = p(y0) = 0, ‖q‖X,∞ ≤ ε,
‖p‖Y,∞ ≤ δ, the supinf problem supx∈X infy∈Kx{f(x, y) − q(x) + p(y)} has a
solution at (x0, y0) and the latter problem is also sup-well-posed with unique sup-
solution x0.

Further, we will be interested in investigating the stronger notion of well-
posedness of the supinf problems, defined again in the Introduction. To this end,
let Sf : C(X)×C(Y ) ⇒ X × Y be the set-valued mapping which assigns to every
couple of functions (q, p) ∈ C(X)×C(Y ) the (possibly empty) solution set to the
problem supx∈X infy∈Kx{f(x, y) + q(x) + p(y)}.

Theorem 3 Let f : X×Y → [−∞,+∞] and K : X ⇒ Y satisfy the assumptions
(A1)–(A4). Then the mapping Sf is single-valued and upper semicontinuous at
(q, p) ∈ C(X)×C(Y ) if and only if the supinf problem (P) for the function f(x, y)+
q(x) + p(y), (x, y) ∈ X × Y , and the mapping K is well-posed.

Proof Suppose that Sf is upper semicontinuous and single-valued at (q, p) ∈
C(X) × C(Y ). Let (x0, y0) be the unique solution to the corresponding supinf
problem, that is Sf (q, p) = {(x0, y0)}. Let ((xn, yn))n ∈ X × Y be an optimizing
sequence for the supinf problem generated by f(x, y)+q(x)+p(y), (x, y) ∈ X×Y .
According to the definition of such a sequence we have (with a slight abuse of
notation we use the symbol vf for the value of the supinf problem generated by
the function f(x, y) + q(x) + p(y), (x, y) ∈ X × Y ):

1. yn ∈ Kxn for each n;
2. v(xn) = infy∈Kxn

{f(xn, y) + q(xn) + p(y)} → vf = supx∈X infy∈Kx{f(x, y) +
q(x) + p(y)};

3. f(xn, yn) + q(xn) + p(yn)→ vf .

Suppose that ((xn, yn))n does not converge to (x0, y0). By passing to a subse-
quence, we may assume that there exist open neighbourhoods U of x0 and V of
y0 such that (xn, yn) /∈ U × V for every n.

From the upper semicontinuity of Sf at (q, p) there exists ε > 0, such that
||q′ − q||X,∞ < ε, ||p′ − p||Y,∞ < ε, q′ ∈ C(X) and p′ ∈ C(Y ), implies Sf (q′, p′) ⊂
U × V .

Let n be so large that
vf − v(xn) < ε/2

and
|vf − f(xn, yn)− q(xn)− p(yn)| < ε/2

Then, in particular, combining the above two inequalities, for such a large n,
we have

f(xn, yn) + q(xn) + p(yn) < v(xn) + ε = inf
y∈Kxn

{f(xn, y) + q(xn) + p(y)}+ ε.

Fix such a large n which satisfies the last inequalities and apply Theorem 1 for
the function f(x, y) + q(x) + p(y), (x, y) ∈ X × Y (the latter function obviously



8 D. Gaumont et al.

satisfies (A1)–(A4) together with the mapping K) the point xn with ε/2 (we have
v(xn) > supx∈X v(x)− ε/2), and the point yn with ε (f(xn, yn) + q(xn) +p(yn) <
infy∈Kxn

{f(xn, y) + q(xn) + p(y)}+ ε). Then, there are functions qn ∈ C(X) and
pn ∈ C(Y ), such that ‖qn‖X,∞ ≤ ε/2, ‖pn‖Y,∞ ≤ ε and (xn, yn) is a solution to
the supinf problem for the function f(x, y) + q(x)− qn(x) + p(y) + pn(y), (x, y) ∈
X×Y . But ‖q−qn−q‖X∞ < ε/2, ‖p+pn−p‖ < ε and (xn, yn) ∈ Sf (q−qn, p+pn),
which contradicts (xn, yn) /∈ U × V .

Conversely, suppose that the supinf problem for the function f(x, y) + q(x) +
p(y), (x, y) ∈ X×Y , (q, p) ∈ C(X)×C(Y ), and the mapping K, is well-posed with
unique solution (x0, y0). Hence Sf (q, p) = {(x0, y0)}. Suppose that Sf is not usc
at (q, p). Then, there exist open neighbourhoods U of x0 and V of y0, such that
for every n ≥ 1 there are qn ∈ C(X) and pn ∈ C(Y ) such that ‖qn − q‖ < 1/n,
‖pn − p‖ < 1/n and Sf (qn, pn) is not included in U × V . The latter implies that
for every n ≥ 1 there exists (xn, yn) ∈ Sf (qn, pn) \ (U × V ).

Since for each n ≥ 1 the couple (xn, yn) is a solution for the supinf problem for
the function f(x, y)+qn(x)+pn(y), (x, y) ∈ X×Y , and the mapping K : X ⇒ Y ,
then for every n ≥ 1 we have yn ∈ Kxn and :

f(xn, yn) + qn(xn) + pn(yn) = infy∈Kxn
{f(xn, y) + qn(xn) + pn(y)}

= supx∈X infy∈Kx{f(x, y) + qn(x) + pn(y)}.

For brevity, for each n ≥ 1, denote by αn, vn(xn) and vn the three (equal)
expressions in the last chain of equalities. The fact that qn and pn converge
uniformly to q and p, respectively (in the corresponding spaces), easily implies
that vn converges to vf = supx∈X infy∈Kx{f(x, y) + q(x) + p(y)}, vn(xn) and
v(xn) = infy∈Kxn

{f(xn, y) + q(xn) + p(y)} are close eventually, and αn and
f(xn, yn) + q(xn) + p(yn) are also close eventually. All this together with the
above equalities shows that ((xn, yn))n is an optimizing sequence for the supinf
problem determined by the function f(x, y)+q(x)+p(y), (x, y) ∈ X×Y . And this
is a contradiction with the well-posedenss of the supinf problem, since ((xn, yn))n
does not converge to (x0, y0). This completes the proof of the theorem.

The reader should observe that, in the above proof, apart from the classical
properties of the uniform convergence, what we have used concerning the assump-
tions imposed in order to apply Theorem 1, is that, if f : X × Y → [−∞,+∞]
and the mapping K : X ⇒ Y satisfy (A1)–(A4) and (q, p) ∈ C(X) × C(Y ), then
f(x, y) + q(x) + p(y), (x, y) ∈ X × Y , also satisfies the assumptions (A1)–(A4) for
the mapping K. Therefore, the following theorem is proved exactly as the theorem
above, having in mind our remark before Theorem 2, namely, that if we have a
function f and K which satisfy (A1)–(A4), and u ∈ C(X × Y ), then the function
f + u also satisfies (A1)–(A4) for the mapping K.

Let us consider the mapping S̃f : (C(X × Y ), ‖ · ‖X×Y,∞) ⇒ X × Y which
assigns to each u ∈ C(X × Y ) the (possibly empty) solution set to the supinf
problem (P) generated by the function f + u and the mapping K. Then,

Theorem 4 Let f : X×Y → [−∞,+∞] and K : X ⇒ Y satisfy the assumptions
(A1)–(A4). Then the mapping S̃f : (C(X × Y ), ‖ · ‖X×Y,∞) ⇒ X × Y is single-
valued and upper semicontinuous at u ∈ C(X×Y ), if and only if the supinf problem
(P) for the function f + u and the mapping K is well-posed.
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The latter result is a generalization of Proposition 4.8 from [3], where it was
proved for the case f ≡ 0.
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